Vector Calculus 20E, Spring 2013, Lecture A, Final exam

Three hours, eight problems. No calculators allowed. Please start each problem on a new page. You will get full credit only if you show all your work clearly. Simplify answers if you can, but don't worry if you can't!

1. Let γ be the closed curve given by the equations $x = t^2 - t$, $y = 2t^3 - 3t^2 + t$ for $0 \le t \le 1$. Using Green's theorem, find the area enclosed by the curve γ .

2. Find the integral $\int_{\gamma} \mathbf{F} \cdot \mathbf{ds}$ where $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$ and γ is the helical curve $x = 2\cos t$, $y = 2\sin t$, z = t for $0 \le t \le 2\pi$, oriented in the direction of increasing t.

3. Find the integral $\int_{\Sigma} y^2 dA$, where Σ is the part of the cylinder $x^2 + y^2 = 4$ lying between the planes z = 0 and z = x + 3.

4. Let D be the standard unit disc in the xy-plane, and let Σ be the part of the graph of the function z = xy lying over the domain D. Find the surface area of Σ .

5. Let Σ be the hemisphere $x^2 + y^2 + z^2 = 16, z \ge 0$, oriented with the upward normal, and let Let **F** be the vector field $(x^2 + z)\mathbf{i} + 3xyz\mathbf{j} + (2xz)\mathbf{k}$. Compute the integral $\int_{\Sigma} (\nabla \times \mathbf{F}) \cdot \mathbf{dA}$

6. Find the flux of the vector field $\mathbf{F} = x^2 y \mathbf{i} + z^8 \mathbf{j} - 2xyz \mathbf{k}$ out of the surface of the standard unit cube $(0 \le x, y, z \le 1)$ in \mathbb{R}^3 .

7. Find the integral $\int_{\gamma} \mathbf{F} \cdot \mathbf{ds}$ where $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and γ is the oriented curve given by

 $(\sin^2 t \cos t, \cos^2 t \sin t, (t - \pi)^4) \qquad 0 \le t \le 2\pi.$

8. One of the two vector fields

$$\mathbf{F} = 3x^2y\mathbf{i} + x^3\mathbf{j} + 5\mathbf{k}$$
$$\mathbf{G} = (x+z)\mathbf{i} + (z-y)\mathbf{j} + (x-y)\mathbf{k}$$

is conservative, and the other is not. Which is which? Find a potential for the conservative one.