Vector Calculus 20E, Fall 2014, Lecture A, Final Exam

Three hours, eight problems. No calculators allowed.

Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

1. Let D be the upper half of the unit disc, given by $x^2 + y^2 \le 1, y \ge 0$. Find the average of the function f(x, y) = y over D.

2. Let D^* be the right-hand half of the unit disc, given by $x^2 + y^2 \le 1, x \ge 0$. Let $D = T(D^*)$, where T is the map $(u, v) \mapsto (u^2 - v^2, 2uv)$. Calculate the area of D.

3. Let C be the curve in the plane described by $t \mapsto (\cos^3 t, \sin t)$ for $0 \le t \le 2\pi$. Use Green's theorem to compute the area enclosed by C.

4. Let Σ be the part of the cone $z = \sqrt{x^2 + y^2}$ lying above the standard unit square $0 \le x, y \le 1$. Compute the surface area of Σ .

5. Let C be the oriented triangular path formed by travelling from (1, 0, 0) to (0, 1, 0) to (0, 0, 1)and then back to (1, 0, 0) along straight line segments. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (y, x, x^2)$. Compute the circulation of **F** around C:

$$\int_C \mathbf{F}.\mathrm{d}\mathbf{s}$$

6. Let γ be the oriented path $t \mapsto (\sqrt{1+t^2}, \sqrt[3]{1+t^3}, \sqrt[4]{1+t^4})$ for $0 \le t \le 1$. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (yz, xz, xy)$. Is **F** conservative? Calculate

$$\int_{\gamma} \mathbf{F}.\mathrm{d}\mathbf{s}$$

7. Let Σ be the part of the unit sphere $x^2 + y^2 + z^2 = 1$ with $x, y, z \ge 0$, oriented outwards from the origin as usual. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (y, -x, 1)$. Compute the flux of **F** out of Σ :

$$\int_{\Sigma} \mathbf{F}.\mathrm{d}\mathbf{S}$$

8. Let Σ be the surface made by gluing the upper unit hemisphere (given by $x^2+y^2+z^2=1, z \ge 0$) onto the unit disc in the *xy*-plane (given by $x^2+y^2 \le 1, z=0$); orient the whole surface outwards. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (x^2, xz, 3z)$. Compute the flux of **F** out of Σ :

$$\int_{\Sigma} \mathbf{F}.\mathrm{d}\mathbf{S}$$