Due Week 2

Reference: 1. L. N. Trefethen and D. Bau: Numerical Linear Algebra, SIAM, 1997

Reading: Review what you learned from your Linear Algebra classes. Review vector norms, matrix norms, orthogonality, projections.

1. (a) Let M be the matrix of data points

$$M = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix}.$$

What are $M^T M$ and $M M^T$?

- (b) Prove that if A is any matrix, then $A^T A$ and AA^T are symmetric. (Recall that a matrix M is symmetric if $M = M^T$.)
- 2. (1.4-Trefethen & Bau) Let f_1, \ldots, f_8 be a set of functions defined on the interval [1,8] with the property that for any numbers d_1, \ldots, d_8 , there exists a set of coefficients c_1, \ldots, c_8 such that

$$\sum_{j=1}^{8} c_j f_j(i) = d_i, \qquad i = 1, \dots, 8.$$

- (a) Show that d_1, \ldots, d_8 determine c_1, \ldots, c_8 uniquely.
- (b) Let A be the 8×8 matrix representing the linear mapping from data d_1, \ldots, d_8 to coefficients c_1, \ldots, c_8 . What is the *i*, *j* entry of A^{-1} ?
- 3. (1.3-Trefethen & Bau) We say that a square or rectangular matrix R with entries r_{ij} is upper-triangular if $r_{ij} = 0$ for i > j. Show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also upper-triangular. (Note that the analogous result also holds for lower-triangular matrices.)
- 4. Recall that a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, is said to have full rank if its columns are linearly independent, i.e., for a_j the *j*th column of A, $c_1a_1 + \ldots + c_na_n = 0 \Longrightarrow c_1 = \ldots = c_n = 0$. Show that A has full rank if and only if no two distinct vectors are mapped to the same vector.
- 5. Sketch the unit circle $\{\boldsymbol{x}, \|\boldsymbol{x}\|_p = 1\}$ in \mathbb{R}^2 and \mathbb{R}^3 for p = 1, 2, and ∞ .
- 6. (a) Write the definition of the vector norm $\|\boldsymbol{x}\|_2$.
 - (b) Show that if Q is an orthogonal matrix, then $||Q\boldsymbol{x}||_2 = ||\boldsymbol{x}||_2$.

Without calculating $Q\mathbf{x}$ directly, what is the value of $||Q\mathbf{x}||_2$?

- 7. If \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^m , the matrix $A = I + \boldsymbol{u}\boldsymbol{v}^T$ is know as a rank-one perturbation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \boldsymbol{u} \boldsymbol{v}^T$ for some scalar α , and give an expression for α . For what \boldsymbol{u} and \boldsymbol{v} is A singular? If it is singular, what is Null(A)?
- 8. Given \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n , show that if $E = \boldsymbol{u}\boldsymbol{v}^T$, then $\|E\|_2 = \|\boldsymbol{u}\|_2 \|\boldsymbol{v}\|_2$. Is the same true for the Frobenius norm, i.e., $\|E\|_F = \|\boldsymbol{u}\|_F \|\boldsymbol{v}\|_F$? Prove it or give a counterexample.
- 9. Consider the matrix

$$A = \begin{bmatrix} -2 & 3 & 2\\ -4 & 5 & 1\\ 1 & -2 & 4 \end{bmatrix}.$$

What are the ℓ^1 , ℓ^2 , ℓ^{∞} -, and Frobenius norms of A?

- 10. Given $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, show that $A^T A$ is nonsingular if and only if A has full rank.
- 11. Consider the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- (a) What is the orthogonal projector P onto range(A), and what is the image under P of the vector $(1, 2, 3)^T$?
- (b) Same questions for B.